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The stability derivatives valid for a limited range of sqersonic
speeti are presented for a series of sweptback wings tapered to a petit
with sweptback or sweptforwsmi trailhg.edges. These Wngs were derived
by modifying the trailtig edge of a basic triangular wing so that it
coincided with lines drawn frm the wing tips to the wing axis of symmetry.
The stability derivatives were formulated by us- the pressure distribu–
tions previously obtained for tie basic triangular wing for aqjl.eof
attack, sideslip, pitching, rolling, and yawing. Explicit expressions
are given for the stability derivatives with respect to principal body
axes and cmmersion formulas are provided for the tramfommtion to
stability axes. The results are limited to Wch numbers for which the
wing is contained within the Mach cones springing fram the vertex end
from the trailing edge of the center section of the wing.

INTRODUCTION

MethodE based upon Mneerized potential flow have beau developed in
references 1 to 5 for determining the pressure distributions for angle
of attack and r.ideslipping,pitchhg, and rolling motions of a triangular
wing of smedl thickness traveling at supersonic speeds. The results of
these investigations are valid for a renge of Mach number for which the
Mach cone spring~ from the apex of the wing may be behtid or ahead of
the leading edge of the wing. ~ reference 6 attention is given @y to
triangular wings contained within the I&ch cone springing from the wing
apex. Methods are obtained therein for detemdning the rolling moment
due to yawing and the several side-force and yawbg—mme nt derivatities,
together with a collection of all the Imown stability derivatives for
triangular wings at supersonic speeds. As pointed out in these previous
investigations, if the trailing edge of the triangular wing is modified
so as to coincide with any line which is inclined at an angle always
greater then the Wch angle (fig. 1), a series of sweptback wings with
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sweptback or sweptforwsrd tmdling edges will be developed which will
have the same pressure distrilmticm over theti surfaces as that determined
for the basic triangular wing. This phenomenon is based on the mill–
known fact that, in Uneerized supersonic flow, disturbances cannot
~qm~t~y f~er forwsrd than the &oh cone from the origh of

.

The object of the -presentTaper is to determine the stability
derivatives at supersonic speeds for this limited series of sweptback
wings tith pointed tips by using the pressure distributim previously
detemined. for the basic trisngulm wtng. Erplicit expressions are
~esented for these stability @rivatives with respect to the principal
body axes and ‘conversicmformlas are ~~ded for the transformatim to
stability sms.

The results are restricted to *gs that sre contained witlulnthe
Mach cones springing from the apex and the trailing edge of the center
section of the *.

SYMBOLS

P

B

a

P

E

X’

rectangular coordinates (figs. 1 and 2)

tirementel flight velocities along x-, y-, ~ z-=es~
rmpectively (fig. 3)

an@ar velocities about x–, y–, ml z+mm3, respective “
(f%. 3).

flight speed

stream Mach nuniber (V/Speed of sound)

‘h -e “G-%)
cotangent of Mach an@e (~=)

angle of attack (w/V)

sngl.eof sideslip (v/V)

semivertex“a@e of triangle (fig. 1)

local lifting pressure (pressure clifference between upper and
lower surface of airfoil)

I
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density of fluid

wing spell

root chord of

root chord of

baeic triangular w3ng (fig. 1)

sweptback w@3 (fig. 1)

(f 4 b/2
mean aeromc chord Z = —

bcr ~
)

(hCd chord)2 dy = ; C(1 – ~)

‘( ~2 2b
aspect ratio A = ~ .

)
C(l -N)

ratio of slope of leading edge to slope

(wbgarea S=~b~=~bc(l–N).~

( )
leadin~e slope C = tan e = &

sweepback angle of leading edge (90° –

angle of trailing-edge i310ye(fig. 1) -

of traildng edge

)bz

7=tan-l: (fig. 1)

n
Y

=—. :(fig. 1)
Xtsnc

‘Cg distsnce of center of gravity forward of
($ cJOJO) ‘ositim

%3 static margin

()

c%=
c ~=z

. .— . —.——.-—. . . —...._ ___
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Et(BC) “complete elliptic integral of the secmd kind with modulus k;

l?~(BC) complete elliptic titegral of the first kind with modulus k;

Et:(Bc) - 1
Et (Be)

Q(BC) =
[id’(BC)]2

-

l– B2$
G(BC) =

(1 – 2#c2)Et(BC) + BW?IP(BC)

H(BC) = 3G(BC) –2Ett(BC)

I(BC) =
‘(l– B’C’)

(2 - B2C’)Et(BC) – B’C?N(BC)

J(BC) = Ett(Bc)I(Bc) ~1 _B2&! .

Jjt rolling mclment

L normal force (approx.lift)

MS pitching mment

Nt yawing moment

Y lateral force

% lift coefficient
(p )
L @’S

c1 r~~t coefficient @v’s)

cm pitching=moment coefficient (Wp$

—.- ———— .——. .-_.—_ —
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m~t

lateral-force

profile-drag coefficient

rof;:w)

5’

coefficient @@V2+

coefficient
0 )
Y $+s

When a, a, g, P, P> ~ r are used as sutmcriptsj a nondimensional
derivative is indicated, and this derivative is the slope of the variation

through zero. For example, =
%

A dot shove a syWol denotes differentiationwith respect”%o time.

W angles are measured in ra&ns.

Uhprimed stability derivatives refer to principal body sxes;
p~hed stability derivatives refer to stability mea.

,

AN.AIXSI$

we stability derivatives of a triangular w5ng of zero thickness
at smell angles of attack in a supersonic air streainhave been determined
theoretically h the tivestigations of references 1 to 6. These
derivatives, with the exception of those which depend on skin friction,
may be separated into two classes – the derivatives which depend upon
the distri?mtion of pressure over the wing and the derivatives which depend
upon the suction force along the leading edge of the w@. Although the
edg~ction derivatives have leen summarized ti this paper, the pressure
coefficients needed to determine these derivatives are not presented.
The 10CS2.liftin~pressure coefficients used to obtain the derivatives
which are dependent on the pressure distribution over the triangular whg
contained within the Wch cone sp&ln@ng from the apex ere presented in
talle I. These lift~pressure coefficients and also the lifting

.. ——.——— .. ..— -..—. . . ... -—A-.—
-—..—————-
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yresmes
( )local Tressme coefficient times *V2 me of the general

form @f(q) where x is the x-coqmnent of the distmce from the
origh of the axes to a particular yotit on the wing and q is the
ratio of the sloye of a ray fram the vertex of the * throu@ the
yoint to the slope of the lemltng edge of the wing. (See fig. 1.)
For the local Hftmesmre coefficients of the stability derivatives
listed in ta%le I. the exponent n of the distance x is either
equal to
ray q =
For n =
the flow

The

Oor toi. For-n= O, the ~essure is constant along any
Ccm.stant from the vertex; this case is termed “cmical. flow.”
1, the -pressur$increases ltiesxly slong each such ray, and
may be termed “quasi<onical.”

particular form xnf(T) noted for the distribution of the
lifthg pressures suggests the “triangular” lntegraticm procedure for
dete~g the forces and mments. Thus, the wbg is considered as
composed of an Mmte m.miberof elemental triangular exeas (see fig. 1).
The lift snd.first mment of the lift are then detemhed for each
elementsll.triangular area and tie results ~a up by titegration to
give the force and moment derivatives for the ccmplete wing. Figures 2,
3, and 4 imllcate the Tosition and positive direction of the axes used
in the snalysis together with the ~ositive direction of the velocities,
forces, and momenim relative to these sxes.

Cmical flows: D6rimtives
% c%’ - c%”- “1° 1 *WS

that the local lift~resmme coefficients Gf the derivatives
% J

k > Sna c~ depend sole= upon q
P

and therefore represent comLcal

flows. The lif% of an elemental triangle (see fig. 1) is

(1)

where P(q) is the local.lifting
stability derivatives. Stice xl

& of q, that is,

premme for any of these three

- Y1 can 30 written as functions

b

———. , -—.
.,.,
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eqzatim (1) lecomes

~=&2c ~(TI) d?

(1 - Iq)2

For the moment of lift of an elemental area first consider
can be determined frcm reference 1 that for a conical-flow
resultant lift of a triangle

trisngle from the vertex, w

triangle. Hence, the moment
(origin at the vertex of the

acts at a point 2/3 the chord

For moments about the

(2)

the fact that
ccmdition the
of the

for this case ~ x
31

of the elemental

of the elemental lift about the y-eds
triengle) is

and by the use of equation (2) this mament bemmm

x~ticipal axis (rol~n

7

(3)

moments)

where y is the y-coordinate of the position of the center of pressure
for P = f(q). Figure I tndlcates that for this condition

Y 2C=~vl

hence

(4)

Equations (2), (3), and (k) are the differm.tial forms of the lift

and the pitching end rolling moments of the wing about the vertex when

— .. —-— —.....—— —— .—— .——-———— —— -.——— - — — -—-—
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the pressure diatributicm is a function only of q. In order to obtain the

lift and the pitching snd rolling moments, (the P(q) functions pressure

3coefficientsmultiplied by 1$3 for these motions obtained fr> table I

are substituted tito equations (2), (3), a (4) ~ ~ese eguati~s are
integratedwith respect to ~ over the entire m. Because me ~
is symmetricaltith respect to the x=principal.axis the integration
can be performed between the limits O to 1 and the results multiplied
by 2. The nmdhemsimal titegral forms of the stability derivatives

C&’
Gul& - %p have been derived, converted to a different cente~f–

gravity position, and listed h table I. The new c~ter of Wa~tY is

located a distance ~ c from the vertex, end the shift affects only the’

derivative ~. &egration of the integrals involved in these deriva–

tives will pro~uqe functions of N which gl~e the mriatiqn of the
stability derivatives with N, the ratio of the slope of the leading
edge to the slope of the trailtng edge of the wing. The deriva–
tive

%
has previously been determined in reference 7 for the

type of wing considered herein. .

Table I i@Lcates that the pressure coefficim.ts fm the derivatives . ,
%

x-component of the distance from the vertex of the wing to the point in 4
questicm. For this case the lift of an elemental.triangle is given by

px=&

dbj ‘ xf(~)xcdq ax
X=o

which can be rewritten as

J
X=xl

dL = f(q)c q x%x
X=o

q3
u = f(q)c —dq

3

hence

(5)

. .
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Reference 4 hdicates

the resultant lift acts at3

9

that when the ~essure is of the form ti(q) ‘

the ~–chord point of the triangle which for

this case is equal to ~’1” ‘e moment about the

the vertex of triangle) is (see eqmtion (5”))

W=-; xlim

g ~4c~t f(q) d~

“–64 (1 - Ih#

h a manner similar to the development of eqpation
rollin~t equatim results when P = ti(~)

at =-ydL

y-axis (ori@n at

(6)

(4), the followhg

(7)

Equations (5), (6), end (7) are the differentid. forms of the lift
and pitckbqg and rollhg mments for cases where the pressure distrilm–
ticns are of the form H(v), that is, of a quasiaonical.tyye. Sub–
stitutian of the appropriate function f(q) for C& and ~ ,in

“
equatim (5), for

% “%
in eqyation (6), & for C Y end C

%%
h equation (7) will give these derivatives as a function of N after
the necessary operations are petiomed and the resulting equations are
reduced to coefficient form. Table I presents the nondimemional integral
form of these derivatives with the origin shifted from the vertex to a

point ; c from the vertex.

Wge-suction derivatives ~ ~,~, C%, cy, ~,mdcy .-The
r

yawing and side-force derivatives depend upon the suction force along
the leading edge of the wing (references 3 &d 6). This suction force
arises as a consequence of the subsmic nature of the external flow
field in the vic~ty of the leading edge of the wing when the leading
edge is swept behind the Mach cone springing &ran the apex of the wing.

-S ~ the sweep of we trailm edge and area of the wing brought
about by varying N have no effect on the leading-edge smctim forces
for the class of sweptback wings considered hereti. These wings, as
stated previously, are contained within the Mach cones,springing from

—-—-— . ..+.- -.—.. . ..— —— —.- . ..— —. —....——-
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the vertex and from the izmiling edge of the center section of the wing.
The values of the coefficients sre modified, however, %ecause of the
difference in the reference * erea; thqt is, the wing area of the
sweptback wing is equal to (1 – N) times the wing area of the basic
triangulm *g. The derivatives obtahed in reference 6 have teen
accorW@y motiied and are presented in table II of this payer where
the quantity (1 – N) has been denoted by I?U(N). Zhe degree of ~
applicability of these Suctia<orce derivatives to,actual full-scele
-s is smewhat uncertain for w reasms pointed out in reference 6
for triangular wTags. .,

RESULTS AND DXWUSSION

The preceding section set forth a method for determining the
stabilfty derivatives for a limited series of sweptback wings with
potited tips and sweptback or sweptf~ &il@ edges as a function

ten E ~ 4 cot Ao me
of the trailing-emep psramter N = — = —

tell5 A

procedure employed pressure coefficients previously determined for the
basic triangular w5ng. Table 3X’gives the values of the stability

derivatives in the principel+.xes system with ori&in at ($ c,O,~ as

shawn in figure 3 zmd elso the conversicm formulas for detemninatim
of the derivatives ti the stability ,systemof axes with origin at

Cg ahead of thea distence x ($ c,o,~ point as shown in figure 4.

These formulas giving the confe&ion of the stability derivatives from
the principal-axes system to the stalfiit~~es system were obtained by
an extension of the transformation equations of reference 8 to take
into considerationthe shift in the origin of the stability exes of
distance Xcg ahead of the origin of the principal axes. Ih the con-

version formulas for the stability-axes system terms whose -tudes
are extremely small compared with unity have been omitted. The
quantities Ett(BC), Q(BC), G(BC), H(BC), I(BC), and J(BC) are the
elliptic integr&l factors of tie stability derivatives that detedne their
variation with Mach number. These factors are shown graphically in
figure 5. The F(N) factors of each of the derivatives exe functions
of IV which give the effect of trailing-edge sweep on the derivatives.
l?i~e 6 presents the vsriaticm of the F(N) factors With Ii from IV= -1,
which corresponds to the case where the Mach lties coincide with the
leailJngand trailing edges of tie ~ (symmmtiic~ diamond plan form),

,

to N = 1, tiich c~esponds to the limiting idealized case for which
the trailing edge coincides with the lead3ng edge of the wing. For N . 0,
of course, the plan form of the wing corresponds to that of the basic

e

triemgular *. For those derivatives listed in table II for which
integrals are listed h table I, the F(N) factors are merely (with

.— .—— .— --- —
.’ -
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, two exceptions, F5(N) and F8(IV)) tie values of the integrals divided

by their respective values at N = O. These derivatives then reduce
at N = O to those appropriate to the basic triangular wing. Because
of the extremely rapid variation of some of the F(N) factors with N,
the product (1 – N)nF(I?) was plotted ti figure 6 for these cases
instead of merely the functions. The formulas for the F(N) factors
are listed in the appendix together with the solution of the definite
forms of the integrals appearing in each of the F(N) factors. For
extremely accurate evaluations of the stabili@ derivatives.it is
suggested that the necessary F(N) factors be calculated using the
formulas for these factors listed in the appendix instead of using the
curves of the F(N) factors presented in figure 6.

!l?ypicalmriations of’the stalility derivatives with trailing-
edg-eep parsmeter IV andwlth Machnuuiber M are presented in
figures 7 and 8, respective~. Because of the localized infinities
at BC = 1 for the suction derivatives Cy , ~ , and

$B %
in the

principal-es system, all the lateral.derivatives in the stability–
axes system (determinedby a transformation from the principal axes
to the stability axes) which contain these ~ction derivatives will
also become locally infinite at BC = 1. For this reason the mari– ~
ations of the illustrative lateral derivatives.in figure 8 are given
for a range of Mach number with an upper limit slightly less than the
Mach nuuibercorresponding to BC = 1. It may be noted that such a
localized infinity is defined with reference to an infinitesimal angle
of sideslip, and the average derivative for a small but finite sideslip
is not extremely large.

In reference 9 the consideration of skin friction is shown to
yield an appreciable damping mommt. The skin-frictionmoment has
been evaluated therein as

L/
c xc

(N’)f = ~. @R2
o —xc [(+)P+Y]@ti-

(8)

(~r+~tyt+)’where ~R is the resultant velocity ~d “~R2 =

-. c
and j3 is the local sideslip angle and equals — to the

v
first order in r.’
herein provided the
tion. Substituting

Equation (8) also
necessary changes
the proper limits

applies to the wings considered
are made in the limits of inte~a-
for the eweptback wing in the

-..—- --- - —. —— .-.. ——
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integrals of eqyation (8) and yerfa the necessary operatim
yields the following nondimensional form of the skin-friction couple
that is a part of the derivative

%

(9)

Were, in terms of I? and A, the upyer limit y cot ~ + ~ of the

‘N(’y-b)+b
inner integral is equal to ~ and the lower limit y/C is

1 –N
4y

equal to The evaluation of eqmtion (9) gives, to the firstm/- -1“
A(L —11)

order in r, in the body+xes system,

()‘nrf = _’Dc
4 l-rf+3r#

2+—9A2 (1 –-N)’

1- N+?N2
where the function – ~ designatedby FM(N) is plotted

(1 -N)
againet N h figure 6.

M the forwlation of the derivative C
b

the associated local

liftin~pressure coefficient listed in-table I and orighalIly detezmdned
in reference 6 does not incltie the effect of the spanwise variations in
locel Mach nunibercausedby yawing (althou@ the variation in forward
speed is taken into account). ti the text of reference 6 based on the
results of calculations on an infinite-aspect=ratiorectangular wing
using Ackeret theory, it is indicated that the spanwise variation of
the compressibilityeffect to the first order in r will yrodu~e first-
order changes in the locel lifting pressures emd hence in the rolling
moment due to yawing. The value of Czr presented herein and obtained

under the approximation of zero spanwise variatim of the local Mach
number is therefore subject to doubt end should be considered only as a
rough indicatim of the true value.

The stability derivatives of this paper are valid only above a

Icertain ~ Mach number given by BC ~ IN I= ~ which iS the

condition that the trailing edge be sweyt less than the Mach lines. An

. .
T, , ..--. . .——z —

,,-
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additional limitation is that the Wch nunibermust be sufficiently above
tity for the linearized theory to apply. ti adtition to tiese l~ta-
tions on the range of validity of the derivatives, the limitations for
the basic triangular tigdi.scussed in reference 6 also apply to the
sweptback wing of this paper.

.

Wey Aeronautical Laboratory
National Advisory Cammittee for Aeronautics

LangleyField, Vs., September 23, 1948

.
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EVALUATION OF THE F(N) FACTORS OF TEE

STAB3XCTY DERIVA!TIVIS

The determination of the F(N) faotors necessitates the evaluation
of the defbite integrals given in table 1. The titegrals of talle I
are or can be formed from the followtng basic integrsls:

r 11

(1 - #)3/2

[ 1
1

-(N2 + 2) N3+3#q– 41?J17= *~-1 ~!! +

2(R2 –1)7= “ 1 –Nn 2(% – 1)2(1 – NV)2
o

2(1 - I@)’”

.

,,

.

——. . . . .. . ..- -.– .—. . ___ .—_..
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12(N2 – 1)s~lq

. [’2(4N5 + llN3) – q(d+ 27’N2)+X@ - @ + lm]ili-l

6(# - 1)3(1 - I?~)3

3(@ + 2)(: + Stn-%?) + (2N5 – @ + 18N)/!!
=

6(1 – &)3~~

q2dq

(1 -

(2TF + 1)(*+ sin%) + ~1 -+’

c

I

—---. — —.. — —--. ———. .— -—T-———.”— -..-.———— —---- —__ —__ _____ —
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%=

[

4N2+1
= ~~–1 ~ – 7

2(192–.l)3J/i=@ “ 1 – ‘~

1

+ 1
-L

[(ll%5+lm3–N)- q(61# – 271# + 3) + ~3 + l~]~li

6(&’ “–1)3(1 – I?q)3
Jo

The I?(N) factors are formulated by refeni& to tables I and II
and by uEing the evaluation of the five basic integrals and are as
f01.luws: .

F#?) = $ (1 – N)211

I

2(1 – I?)@’

( )
: + fJfi-1~+ ~~s

= Ic(l+ I?)3/2

F2(N) = + (1 - N)2(12 - 14)
.

.{

.— ..- ,- . ..—~ ---- — .._ -. .
,’----

.-.
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F3(N) = $ (1 – N)2@ – 14) .

F4(~) =: (l- N)I1

.

F5(I?)= $ (1 – N)~l – (I – N)%]

N [2-N,(?+SW.N)+ (N2+2N-2,,=2]
= YC(l+ N)5/2(1 –N)l/2

0 2

= I-((1+ N)5/2(1 – N)l/2
(1 – 8N)($ + Sin-lj – N(6N2 + m - 7)/ii

●

. -—._
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[
F7(N) =% (1-N)2 ; (213 -@ - *(% - 14)]1

2

[ ( )
3(6N2-8N+ 1) $+ Eti-%

= 3Yc(l+N)7/2(1 -I?)3/2

1+ rf(wd + I.@ – 20N2 – hm + 29)~~

.

-1

N [2. N)(!:+sti-%j+(N2+2N-2)/-j
= fi(l+ N)5/2(1 –N)3/2

F9(N) = * (l– N)214

.

.

. ..— ..- _—. — ,-. ,—7
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FU(N) = 1 – N

(Ratio of area of swepthck w5ng to basic triangular wing.)

(See discussion of

The variaticm
N=–1 to N=l

~ (N) 31&-N+l,
32= (1 - N)2

derivative ~r. )

of each of the F(N) factors with N fra
is presented ti figure 6.

19
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Figure 2.- Axes and notation used in analysis. t
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‘hec-elabe’-edQ(;C)
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